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Abstract

The 𝑘-center clustering problem is of fundamental importance for

a broad range of machine learning and data science applications.

In this paper, we study the deletion-robust version of the problem.

Specifically, we aim to extract a small subset of a given data set,

referred to as a coreset, that contains a provably good set of 𝑘 centers

even after an adversary deletes up to 𝑧 arbitrarily chosen points

from the data set. We propose a 4-approximation algorithm that

provides a coreset of size 𝑂 (𝑘𝑧). To our knowledge, this is the first

algorithm for deletion-robust 𝑘-center clustering with a theoretical

guarantee. Moreover, we accompany our theoretical results with

extensive experiments, demonstrating that our algorithm achieves

significantly better robustness than non-trivial baselines against

three heuristic gray-box and white-box adversarial deletion attacks.

CCS Concepts

• Theory of computation→ Approximation algorithms anal-

ysis; • Information systems→ Clustering.
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1 Introduction

The 𝑘-center problem is a fundamental and well-studied formula-

tion of metric clustering [13], with broad applications in machine

learning and data science tasks [21, 22, 31]. In this problem, for a

set 𝑋 of 𝑛 points in a metric space and a parameter 𝑘 ∈ Z+, the goal
is to find a subset 𝑆 ⊆ 𝑋 of size 𝑘 such that the maximum distance

between any point in 𝑋 and its nearest neighbor in 𝑆 is minimized.

This maximum distance is called the loss (or cost) of the set 𝑆 of

centers w.r.t. 𝑋 . The 𝑘-center problem is known to be NP-hard [13]

to approximate within a factor less than 2; that is, no polynomial

algorithm can guarantee to find a set of centers whose loss is better

than two times the optimal loss unless 𝑃 = 𝑁𝑃 .
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In this paper, we investigate the deletion-robust version of 𝑘-

center clustering. One primary motivation for considering data

deletions is privacy [26]: At any time, users can exercise their “right

to be forgotten” and thus prevent some data points from being

used for analysis or picked as centers. Another motivation is fault
tolerance [20]: When some centers become unavailable, how can

we find their alternatives efficiently?

Following existing approaches [26], we formulate the robustness

to deletion as a two-phase game against an adversary. In the first

phase, the algorithm receives a data set 𝑋 , the number 𝑘 of centers

to select, and a robustness parameter 𝑧 ∈ Z+ to indicate the number

of points to be deleted, and extracts a small subset 𝐶 ⊆ 𝑋 (i.e.,

coreset). Moreover, during the first phase, an adversary chooses a

set 𝐷 ⊆ 𝑋 with |𝐷 | = 𝑧 to delete from 𝑋 . In making this choice,

the adversary is assumed to know the algorithm that produces the

coreset and may have direct access to the resulting coreset instance

𝐶 (“white-box setting”) or not (“gray-box setting”). In the second

phase, the adversary reveals the deletion set 𝐷 ; and as a response,

the algorithm selects a set 𝑆 of 𝑘 centers from𝐶 \𝐷 . In this problem

formulation, it is desirable to design an algorithm to efficiently

provide a concise coreset (sublinear to or independent of 𝑛) and a

center selection with approximation guarantees.

Related Work. There is a comprehensive body of literature on the

𝑘-center clustering problem. In a seminal work, Gonzalez [13] pro-

posed a greedy𝑂 (𝑛𝑘)-time algorithm, typically referred to as GMM,

that produces the best possible 2-approximate solution. Recently,

approximation algorithms were designed for 𝑘-center clustering

in streaming [5, 8, 15], distributed [5, 24, 29], fully-dynamic [6, 14],

and fairness-constrained [1, 8, 17, 18, 21] settings. Robustness to

outliers was also considered in the design of 𝑘-center clustering al-

gorithms [5, 10, 24, 25]. However, none of the above algorithms can

be used for the deletion-robust setting with theoretical guarantees.

The closest formulation to ours is the fault-tolerant 𝑘-center

problem [7, 12, 20], which selects 𝑘 “robust” centers such that when

𝑧 < 𝑘 centers fail, the remaining 𝑘 − 𝑧 centers still serve as an

approximately good solution. The fault-tolerant scheme differs from

our deletion-robust scheme since it follows a more restricted setting.

Specifically, in the fault-tolerant scheme, the algorithm can select

only 𝑘 points, knowing that 𝑧 of them may be deleted, whereas, in

our deletion-robust scheme, the coreset size can be greater than 𝑘 .

Moreover, for the fault-tolerant scheme, the deleted 𝑧 points are

limited to the selected centers, whereas, for our deletion-robust

scheme, all points are candidates for deletion.

Deletion-robust submodular optimization [2, 4, 9, 11, 19, 26, 30]

has also attracted much attention recently. We adopt the same

scheme of deletion robustness as in these studies. However, since

submodular optimization differs from 𝑘-center clustering, their

algorithms cannot be used directly for our problem.
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Our Contributions.We present DeletionRobustKC, a coreset-

based approximation algorithm for the problem of deletion-robust

𝑘-center clustering. DeletionRobustKC consists of two subrou-

tines, namely (1) DRCoreset, which extends GMM to compute a

coreset𝐶 of size𝑂 (𝑘𝑧) on the data set𝑋 , including enough center al-

ternatives to anticipate any set of 𝑧 deletions, and (2) DRSolution,

which selects a set 𝑆 of 𝑘 centers closest to the original centers

by GMM from the remaining points in 𝐶 after the deletion of 𝑧

points. Moreover, we show that DeletionRobustKC achieves an

approximation factor of 4. To our knowledge, this is the first al-

gorithm with a known theoretical guarantee for this problem. Fi-

nally, we provide an extensive empirical study on the effective-

ness of DeletionRobustKC. Specifically, we devise several strate-

gies for an adversary to decide the points to delete, including a

gray-box strategy and two white-box strategies. The results show

that DeletionRobustKC achieves significantly better robustness

against all three deletion adversaries than non-trivial baselines on

five public real-world and synthetic data sets.

2 Preliminaries

Let (𝑋,𝑑) be a finite metric space where 𝑋 is a set of 𝑛 points and

𝑑 : 𝑋 × 𝑋 ↦→ R≥0 is a distance function that measures the dissimi-

larity between any pair of points in 𝑋 and satisfies the axioms of

(i) identity of indiscernibles, (ii) symmetry, and (iii) triangle inequal-
ity. By extension, the distance function between a point 𝑥 and a set

𝑆 of points is defined as 𝑑 (𝑥, 𝑆) = min𝑦∈𝑆 𝑑 (𝑥,𝑦). Moreover, given

a point 𝑥 ∈ 𝑋 and a positive number 𝑟 ∈ R+, a (closed) ball of radius
𝑟 centered at point 𝑥 is denoted by 𝐵(𝑥, 𝑟 ) = {𝑦 ∈ 𝑋 : 𝑑 (𝑥,𝑦) ≤ 𝑟 }.

Based on the definitions above, the 𝑘-center problem asks for a

set 𝑆 ⊆ 𝑋 of 𝑘 points (called “centers”) to minimize the maximum

distance between any point 𝑥 ∈ 𝑋 and its closest center in 𝑆 , i.e.,

𝑑 (𝑥, 𝑆). As such, the loss (or cost) of a set 𝑆 w.r.t. 𝑋 is defined as

𝑐 (𝑆) = max𝑥∈𝑋 𝑑 (𝑥, 𝑆) and the optimal 𝑘-center is as follows:

𝑆∗ = argmin

𝑆⊆𝑋, |𝑆 | ≤𝑘
𝑐 (𝑆). (1)

An equivalent form of the 𝑘-center problem is to find 𝑘 congruent

balls of the smallest radius 𝑟∗ = 𝑐 (𝑆∗) such that all points in 𝑋 are

contained by at least one of these balls. We say that 𝑟∗ is the optimal

loss OPT of the problem. GMM [13] provides the best possible 2-

approximate solution for Problem 1 in 𝑂 (𝑛𝑘) time. Specifically, it

first picks an arbitrary point 𝑥1 ∈ 𝑋 as the initial center set 𝑆1. In the

𝑖-th iteration (𝑖 = 2, . . . , 𝑘), it adds the point 𝑥𝑖 farthest from 𝑆𝑖−1,
i.e., 𝑥𝑖 = argmax𝑥∈𝑋 𝑑 (𝑥, 𝑆𝑖−1), to 𝑆𝑖−1 as 𝑆𝑖 . Finally, it returns the
set 𝑆 = 𝑆𝑘 after the 𝑘-th iteration for 𝑘-center clustering.

The deletion-robust 𝑘-center problem is posed in two phases.

The first phase takes as input 𝑋 , 𝑘 , and a robustness parameter

𝑧 ∈ Z+, and outputs a small subset of points — the so-called coreset

𝐶 . The second phase takes as input a (possibly adversarial) deletion

set 𝐷 of size 𝑧 and the output of the first phase and outputs the final

𝑘-center selection. Intuitively, the scheme asks for maintaining a

coreset 𝐶 from which, in the event of deletion, the set of 𝑘 centers

can be computed without access to the full data set. A high-quality

coreset should be small in size (typically sublinear to or independent

of 𝑛) while having a tight approximation factor. To measure how

the coreset 𝐶 can approximate the data set 𝑋 , we define the notion

of (𝛼, 𝑧)-robust coreset as follows:

Cluster 1 Cluster 2
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…… 𝛾%𝛾&

Figure 1: Illustration of the deletion vulnerability of GMM.
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Figure 2: DeletionRobustKC for 𝑘 = 3 and 𝑧 = 3. (a) The

coreset consisting of the points returned by GMM (Lines 1–3

of Algorithm 1) in blue and their alternative points (Lines 7–

12 of Algorithm 1) in green. (b) The process for Algorithm 2

to find an alternative 𝑥 ′
3
to the center 𝑥3 when 𝑥3 is included

in the deletion set 𝐷 , indicated by red cross-marks.

Definition 2.1. [(𝛼, 𝑧)-Robust Coreset] A set 𝐶 ⊆ 𝑋 is an (𝛼, 𝑧)-
robust coreset for 𝑘-center clustering on 𝑋 if there is a subset 𝑆 ′ ⊆
𝐶 \𝐷 with |𝑆 ′ | ≤ 𝑘 such that 𝑐 (𝑆 ′) = max𝑥∈𝑋\𝐷 𝑑 (𝑥, 𝑆 ′) ≤ 𝛼 · OPT
for an approximation factor 𝛼 ≥ 1 and every 𝐷 ⊆ 𝑋 with |𝐷 | = 𝑧.

Accordingly, a center set 𝑆 ′ is 𝛼-approximate if 𝑐 (𝑆 ′) ≤ 𝛼 · OPT.
A straightforward adaptation of GMM to the deletion-robust

setting is to run it for 𝑘 + 𝑧 iterations to obtain a coreset 𝐶 = 𝑆𝑘+𝑧 ,
ensuring that at least 𝑘 points remain in the set after any 𝑧 deletions.

However, such an approach does not provide any approximation

guarantee, as the remaining points may be arbitrarily bad for 𝑘-

center clustering. We provide an example in Figure 1 to illustrate

that GMM is not robust to adversarial deletion. Suppose that we

have a point set𝑋 with two clusters, where the intercluster distance

𝛾3 is much greater than the intracluster distances 𝛾1, 𝛾2. For 𝑘 = 2

and 𝑧 = 1, GMM returns a solution 𝑆3 = (𝑥1, 𝑥2, 𝑥3), which is vulner-
able to adversarial deletion: Once 𝑥2 is deleted, 𝑆

′ = (𝑥1, 𝑥3) does
not contain any point in the first cluster and becomes arbitrarily

bad for 𝑘-center clustering.

3 Algorithm

This section introduces a coreset-based approximation algorithm,

DeletionRobustKC, for deletion-robust𝑘-center clustering, which

implements the two-phase scheme described in Section 2. In the

first phase, without knowledge of 𝐷 , it extracts from the data set

𝑋 a coreset 𝐶 of size 𝑂 (𝑘𝑧) that is robust to any deletion set 𝐷 of

size 𝑧. In the second phase, after 𝐷 is revealed, it removes 𝐷 from𝐶

and, from the remaining points𝐶′, finds a final set of 𝑘 centers. The

overall process of DeletionRobustKC is illustrated in Figure 2.

Phase 1 (DRCoreset): Algorithm 1 contains DRCoreset, the pro-

cedure for building the coreset during the first phase. First, it in-

vokes GMM to find a set 𝑆 of size 𝑘 (Lines 1–3). Then, it calculates

the clustering cost 𝑐 (𝑆) of the set 𝑆 with respect to the data set

𝑋 (Line 4). Based on the center set 𝑆 and the cost 𝑐 (𝑆), it draws
𝑘 congruent balls 𝐵1, . . . , 𝐵𝑘 , each of which is centered at a point
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Algorithm 1: DRCoreset

Input :Data set 𝑋 , size parameter 𝑘 , and robustness parameter 𝑧

Output :Set𝐶 ⊆ 𝑋

1 Pick an arbitrary point 𝑥1 ∈ 𝑋 and initialize 𝑆1 = {𝑥1};
2 for 𝑖 = 2 to 𝑘 do

3 𝑥𝑖 ← argmax𝑥 ∈𝑋 𝑑 (𝑥, 𝑆𝑖−1 ) and 𝑆𝑖 ← 𝑆𝑖−1 ∪ {𝑥𝑖 };
4 𝑆 ← 𝑆𝑘 and 𝑐 (𝑆 ) ← max𝑥 ∈𝑋 𝑑 (𝑥, 𝑆 ) ;
5 for 𝑖 = 1 to 𝑘 do

6 Compute a ball 𝐵𝑖 centered at point 𝑥𝑖 of radius 𝑐 (𝑆 ) , i.e.,
𝐵𝑖 = {𝑥 ∈ 𝑋 : 𝑑 (𝑥, 𝑥𝑖 ) ≤ 𝑐 (𝑆 ) };

7 for 𝑖 = 1 to 𝑘 do

8 if |𝐵𝑖 | ≤ 𝑧 then

9 𝐶𝑖 ← 𝐵𝑖 ;

10 else

11 𝐶𝑖 ← {𝑥𝑖 };
12 Add 𝑧 arbitrary points in 𝐵𝑖 (excluding 𝑥𝑖 ) to𝐶𝑖 ;

13 return𝐶 ← ⋃𝑘
𝑖=1𝐶𝑖 ;

𝑥𝑖 ∈ 𝑆 (for 𝑖 ∈ [𝑘]) and has a radius equal to 𝑐 (𝑆) (Lines 5–6). By
the definition of 𝑐 (𝑆), it is guaranteed that every point 𝑥 ∈ 𝑋 must

be contained in at least one ball (and possibly more than one). Next,

it finds a set 𝐶𝑖 of alternatives for each point 𝑥𝑖 ∈ 𝑆 in response

to its potential deletion. Intuitively, all points in 𝐵𝑖 are considered

possible alternatives to 𝑥𝑖 – and, to anticipate the possibility that all

𝑧 deletions occur within the same ball, 𝑧 of them are selected for the

coreset for each 𝑥𝑖 . Specifically, for each 𝑖 ∈ [𝑘], if 𝐵𝑖 has at most

𝑧 points, all of them are selected as 𝐶𝑖 ; otherwise, in addition to

𝑥𝑖 , 𝑧 points are arbitrarily selected from 𝐵𝑖 to form 𝐶𝑖 (Lines 7–12).

Finally, the union of all 𝐶𝑖 ’s is returned as the coreset 𝐶 (Line 13).

Phase 2 (DRSolution): Algorithm 2 contains DRSolution, the

procedure for computing the 𝑘 centers during the second phase.

First, it removes any deleted points 𝐷 from the coreset 𝐶 to obtain

the updated coreset 𝐶′ (Line 1). Then, it considers three cases for
each 𝑖 ∈ [𝑘]: (1) if 𝑥𝑖 is not deleted, 𝑥𝑖 is still used as a center in

the robust solution 𝑆 ′ (Line 4); (2) if 𝑥𝑖 is deleted but some of its

alternatives in𝐶𝑖 remain after deletion, the alternative point closest

to 𝑥𝑖 in 𝐶𝑖 ∩𝐶′ is selected as the new center 𝑥 ′
𝑖
to replace 𝑥𝑖 in the

solution (Line 6); (3) if 𝑥𝑖 is deleted along with all its alternatives in

𝐶𝑖 , then an arbitrary point in 𝐶′ is selected to replace 𝑥𝑖 (Line 8).

The above three cases guarantee that the returned solution contains

at least one point from each non-empty 𝐶𝑖 \ 𝐷 for 𝑖 ∈ [𝑘].
Theoretical Analysis. Next, we analyze the approximation factor

and complexity of DeletionRobustKC.

Theorem 3.1. Algorithm 1 provides a (4, 𝑧)-robust coreset 𝐶 of
size 𝑂 (𝑘𝑧) in 𝑂 (𝑛𝑘) time.

Proof Sketch. First, as analyzed in [13], we have 𝑐 (𝑆) ≤ 2 ·OPT.
For each 𝑥 ∈ 𝑋 , there exists 𝑥𝑖 ∈ 𝑆 with 𝑑 (𝑥, 𝑥𝑖 ) ≤ 𝑐 (𝑆), and thus

𝑥 ∈ 𝐵𝑖 . Then, according to the triangle inequality, for any 𝑥,𝑦 ∈ 𝐵𝑖 ,
we have 𝑑 (𝑥,𝑦) ≤ 𝑑 (𝑥, 𝑥𝑖 ) + 𝑑 (𝑦, 𝑥𝑖 ) ≤ 2 · 𝑐 (𝑆) ≤ 4 · OPT. For any
deletion set 𝐷 with |𝐷 | ≤ 𝑧, each 𝐶𝑖 ⊆ 𝐵𝑖 must satisfy one of the

following two cases: (i) 𝐶𝑖 \ 𝐷 ≠ ∅ and there is some 𝑥 ∈ 𝐶𝑖 such
that 𝑑 (𝑥,𝑦) ≤ 4 · OPT for all 𝑦 ∈ 𝐵𝑖 ; (ii) 𝐶𝑖 \ 𝐷 = ∅, and it must

hold that |𝐶𝑖 | ≤ 𝑧, 𝐵𝑖 = 𝐶𝑖 , and 𝐵𝑖 \ 𝐷 = ∅: in this case, no points

remain from 𝐵𝑖 and it does not contribute to the cost after deletion.

Therefore, for a set 𝑇 of centers, where each point is selected from

Algorithm 2: DRSolution

Input :Coreset𝐶 =
⋃𝑘

𝑖=1𝐶𝑖 , deletion set 𝐷 ⊆ 𝑋 with |𝐷 | = 𝑧,

and size parameter 𝑘

Output :Set 𝑆 ′ ⊆ 𝐶 \𝐷 with |𝑆 ′ | = 𝑘

1 𝐶′ ← 𝐶 \𝐷 and 𝑆 ′ ← ∅;
2 for 𝑖 = 1 to 𝑘 do

3 if 𝑥𝑖 ∈ 𝐶′ then
4 𝑆 ′ ← 𝑆 ′ ∪ {𝑥𝑖 };
5 else if 𝐶𝑖 ∩𝐶′ ≠ ∅ then
6 𝑥 ′

𝑖
← argmin𝑥 ∈𝐶𝑖∩𝐶′ 𝑑 (𝑥, 𝑥𝑖 ) and 𝑆

′ ← 𝑆 ′ ∪ {𝑥 ′
𝑖
};

7 if |𝑆 ′ | < 𝑘 then

8 Pick 𝑘 − |𝑆 ′ | points arbitrarily from𝐶′ \ 𝑆 ′ as a set 𝑆 ′′;
9 𝑆 ′ ← 𝑆 ′ ∪ 𝑆 ′′;

10 return 𝑆 ′;

a (nonempty) set 𝐶𝑖 \ 𝐷 , we have |𝑇 | ≤ 𝑘 and 𝑑 (𝑥,𝑇 ) ≤ 4 · OPT for

every 𝑥 ∈ 𝑋 \ 𝐷 , as ⋃𝑘
𝑖=1 𝐵𝑖 = 𝑋 , and thus 𝑐 (𝑇 ) ≤ 4 · OPT. Finally,

since |𝐶𝑖 | ≤ 𝑧 + 1 for each 𝑖 ∈ [𝑘], we have |𝐶 | ≤ 𝑘 (𝑧 + 1) = 𝑂 (𝑘𝑧).
Therefore, 𝐶 is a (4, 𝑧)-robust coreset of size 𝑂 (𝑘𝑧).

The time complexity of GMM is 𝑂 (𝑛𝑘). Then, obtaining the

𝑘 balls 𝐵1, . . . , 𝐵𝑘 also takes 𝑂 (𝑛𝑘) time. Finally, building all 𝐶𝑖 ’s

and 𝐶 requires 𝑂 (𝑘𝑧) time. Since 𝑛 > 𝑘, 𝑧, the time complexity of

Algorithm 1 is 𝑂 (𝑛𝑘). □

Theorem 3.2. Algorithm 2 returns a 4-approximate set 𝑆 ′ of cen-
ters with |𝑆 ′ | = 𝑘 in 𝑂 (𝑘𝑧) time.

Proof Sketch. According to the proof of Theorem 3.1, a set 𝑇

is 4-approximate if 𝑇 ∩ (𝐶𝑖 \ 𝐷) ≠ ∅ for every nonempty 𝐶𝑖 \ 𝐷 ,
which always holds by the set 𝑆 ′ by Algorithm 2. Moreover, adding

any new point to 𝑆 ′ does not increase its clustering cost w.r.t. 𝑋 \𝐷 .

Therefore, 𝑆 ′ is a 4-approximate solution. Since finding 𝑥 ′
𝑖
for 𝑥𝑖

takes 𝑂 (𝑧) time, the time complexity of Algorithm 2 is 𝑂 (𝑘𝑧). □

4 Experiments

In this section, we present the setup and results of the experiments.

Implementation. All experiments were carried out on a com-

puter with an Intel Core i5-10200H CPU @2.40GHz and 16.0GB

RAM running Windows 10. The algorithms were implemented in

Python 3. Our code and data are published at https://github.com/

HonokaKousaka/DRkC.

Data Sets. In the experiments, we used four public real-world

data sets and one synthetic data set, with the description, size, and

dimensionality for each of them shown in Table 1. We randomly

sampled 1,000 points from each data set for evaluation.

Baselines. We compare DeletionRobustKC with three baselines,

which differ in how they build a coreset in the first phase: (i) GMM

greedily picks 𝑘 + 𝑧 points; (ii) FaultTolerantKC [20] provides

Table 1: Statistics of data sets in the experiments, where 𝑛 is

the number of data points and 𝑑𝑖𝑚 is the dimensionality.

Dataset Description 𝑛 𝑑𝑖𝑚

Adult [3] Numeric attributes for income prediction 45,222 6

CelebA [23] Features for celebrity images by VGG16 202,599 25,088

GloVe [28] Global vectors for word representation 400,000 100

MovieLens [16] User vectors derived from rating matrix 162,541 50

Synthetic Gaussian blobs made by scikit-learn [27] 1,000,000 20

https://github.com/HonokaKousaka/DRkC
https://github.com/HonokaKousaka/DRkC
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Table 2: Robustness of GMM, FaultTolerantKC, and DeletionRobustKC against different adversarial strategies (GB-GMM,

WB-NN, and WB-Greedy) for the parameters (𝑘, 𝑧) = (10, 10), (5, 20), and (20, 5). The best result in each setting appears in bold.

Adversary GB-GMM WB-NN WB-Greedy

(𝑘, 𝑧 ) (10, 10) (5, 20) (20, 5) (10, 10) (5, 20) (20, 5) (10, 10) (5, 20) (20, 5)

Adult

GMM 1.3329 1.9476 1.4093 3.1066 2.6464 1.9664 2.9282 2.2984 1.8752

FaultTolerantKC 1.3888 1.0230 1.2025 1.9513 2.3494 1.7595 2.5177 2.3546 1.8963

DeletionRobustKC 1.1950 1.3925 1.1002 1.0388 1.0467 1.0674 1.0823 1.0496 1.0856

CelebA

GMM 1.2413 1.2844 1.2196 1.2862 1.2683 1.2724 1.2797 1.2904 1.2926

FaultTolerantKC 1.2364 1.2820 1.2261 1.3263 1.3128 1.2596 1.3653 1.3412 1.3872

DeletionRobustKC 1.0355 1.0380 1.0298 1.0536 1.0486 1.0551 1.0541 1.0561 1.0606

GloVe

GMM 1.1622 1.1881 1.0975 1.2309 1.2375 1.1456 1.2500 1.2718 1.2222

FaultTolerantKC 1.1757 1.1309 1.1038 1.2295 1.1902 1.0749 1.2469 1.2901 1.1884

DeletionRobustKC 1.0595 1.0486 1.0508 1.0566 1.0628 1.0576 1.0705 1.0535 1.0469

MovieLens

GMM 1.2136 1.2097 1.1875 1.2611 1.3466 1.1739 1.3632 1.4330 1.2805

FaultTolerantKC 1.1981 1.2528 1.1916 1.2946 1.2502 1.1972 1.3734 1.4632 1.2869

DeletionRobustKC 1.0663 1.0567 1.0658 1.1216 1.1096 1.0635 1.1286 1.1569 1.0802

Synthetic

GMM 1.0869 1.0762 1.1171 1.1921 1.1697 1.1725 1.2212 1.2275 1.1791

FaultTolerantKC 1.0590 1.0307 1.0266 1.2233 1.2069 1.1082 1.1091 1.1915 1.1592

DeletionRobustKC 1.0431 1.0304 1.0176 1.0449 1.0409 1.0133 1.0457 1.0476 1.0285

Figure 3: Robustness of each algorithm against different adversarial strategies when 𝑘 = 10 and 𝑧 = 10, 20, . . . , 100.

𝑘 +𝑧 centers robust to 𝑧 failures; (iii) FullCoreset retains all points
in the data set. In the second phase, with the deletion set𝐷 revealed,

each baseline applies GMM on the remaining points of the coreset

to obtain the 𝑘 centers.

Adversaries.We devise the following three strategies for the adver-

sary to decide the points to delete: (i) GB-GMM is a gray-box strat-

egy without access to the coreset that aims to remove “good” center

candidates from the data: to select the deletion set, it runs GMM

for 𝑧 iterations. (ii) WB-NN is a white-box strategy that knows the

coreset before deletion. Since the loss of centers is bounded by the

maximum loss, WB-NN aims to increase the loss by producing some

points that any point in the coreset cannot represent. To achieve

this, WB-NN randomly selects a point in the coreset and deletes

the point along with its (𝑧 − 1)-nearest neighbors. (iii) WB-Greedy

is a white-box strategy that proceeds greedily in 𝑧 iterations, each

choosing a point that maximizes the increase in the loss if deleted.

Measures. To evaluate the robustness of each algorithm, we use

the ratio of the loss of its solution w.r.t. a deletion set picked by an

adversary over the loss achieved by FullCoreset w.r.t. the same

deletion set. Note that FullCoreset is equivalent to GMM picking

the 𝑘 centers post-deletion, and its solution is 2-approximate for the

post-deletion data set. Moreover, we ran each algorithm ten times

and reported the average of the ratios. The smaller the (average)

ratio is, the more robust the algorithm is to deletion.

Robustness Results. Table 2 presents the robustness results. We

observe the following: DeletionRobustKC almost always shows

significantly better robustness than GMM and FaultToleran-

tKC. The fact that FaultTolerantKC appears much less robust

than DeletionRobustKC and exhibits close robustness to GMM

is mainly attributed to the misalignment between the fault-tolerant

and deletion-robust schemes, as explained in Section 1. As expected,

the two white-box adversaries produce more effective deletion at-

tacks (higher ratios) than the gray-box adversary in most cases.

Effect of Parameter 𝑧 on Robustness.We further evaluate the ef-

fect of 𝑧 on the robustness of each algorithm. The results for 𝑘 = 10

and 𝑧 = 10, 20, . . . , 100 as shown in Figure 3. DeletionRobustKC

consistently shows better robustness than the two baselines across

all data sets and 𝑧’s. In addition, its ratios are mostly steady for

different 𝑧’s and adversaries. In contrast, GMM and FaultToler-

antKC often become less robust with increasing 𝑧, particularly

when attacked by white-box adversaries. In terms of time efficiency,

taking CelebA as an example, DeletionRobustKC runs in around

0.03 seconds when 𝑘 = 10 and 𝑧 = 10, while GMM and FaultTol-

erantKC run in about 0.07 and 20 seconds in the same setting.

5 Conclusion

In this paper, we formulated a novel deletion-robust 𝑘-center prob-

lem and proposed a simple yet effective coreset-based approxi-

mation algorithm, DeletionRobustKC, for this problem. We per-

formed extensive theoretical and empirical studies to demonstrate

the superior robustness of DeletionRobustKC against adversarial

deletions compared to competing baselines. As a preliminary study,

this paper leaves some open questions for future work. For exam-

ple, as the coreset size 𝑂 (𝑘𝑧) and the approximation factor 4 of

DeletionRobustKC are not tight compared to their lower bounds

(resp., 𝑂 (𝑘 + 𝑧) and 2), how can they be further improved?
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